PHASE TRANSITIONS AND SOME PHYSICAL PROPERTIES IN FLUORIDES AND OXIDE FLUORIDES CONTAINING MONOVALENT SILVER

Jean Grannec*, Abdelmjid Yacoubi, Dietmar Linke^a, Alain Tressaud and Paul Hagenmuller

Laboratoire de Chimie du Solide du CNRS, University of Bordeaux I, Talence (France)

Several fluorides and oxide fluorides containing monovalent silver have been obtained by direct synthesis in sealed gold tubes between 400 and 600°C depending on the starting materials. In every case the solid state reaction has been completed by a gentle fluorination.

The structure of these materials is essentially connected to the following families:

- (NH₄)₃AlF₆ and related structures : Ag_3MF_6 (M = A1, V, Cr, Fe, Co, Ga, In), Ag_3TiOF_5 , $Ag_3NbO_2F_4$, $Ag_3WO_3F_3$

- chiolite :
$$Ag_5M_3F_{14}$$
 (M = A1, V, Cr, Fe, Ga), $Ag_5Ti_3O_3F_{11}$, $Ag_5W_3O_9F_5$.

In the former family, a few compounds crystallize with a cubic structure. For all the others, phase transitions have been detected by DTA and microcalorimetry. The high-temperature forms (cubic, Fm3m) have been characterized by X-ray study using a Guinier-Simon camera. The following transition temperatures have been found:

In the latter family, the magnetic behavior has been investigated when the trivalent cation is a 3d-element. The phases ${\rm Ag_5}^{\rm M}{\rm _3}^{\rm F}{\rm _{14}}$ are ferrimagnetic (T $_{\rm _C}$ = 12 K for M = V ; T $_{\rm _C}$ = 14 K for M = Cr ; T $_{\rm _C}$ = 80 K for M = Fe). The Curie temperatures are close to those found for the corresponding sodium phases.

a permanent address : Zentralinstitut für Anorganische Chemie der AdW der DDR, Berlin, DDR